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I. INTRODUCTION

During the period of this program the scientific objectives were to complete a study

of one-dimensional electrostatic plasmas using the discrete Hamiltonian method, and

to construct a model of ridged high harmonic gyrotron oscillators using standard'_

gyrotron modeling techniques. Ridged gyrotrons appear ideal for the future applica-

tion of the multiple time scale, discrete Hamiltonian method. As with all gyrotrons,

ridged gyrotrons are characterized by several primary time scales, which are the cy-

clotron period, the cavity RF field oscillation period, and the transit time through the

gyrotron tube. If only oUe harmonic is being considered, then the cyclotron period and

the cavity ( oscillation period need not be treated separately since only the difference

between them has significance. For high harmonic emission, however, the ridged gy-

rotron appears to require the simultaneoui treatment of multiple cyclotron harmonics

and hence multiple harmonic time scales. Tn addition, mode competition, which can

lead to coupling between multiple RU',cavity modes, is possible and would also result

in the need to treat several cavity frequencies simultaneously.

In investigating electrostatic plasmas, difference equations were obtained by inte-

grating over unperturbed orbits, allow time steps much longer than the linear mode

oscillation period. In our gyrotron modeling, we developed a detailed linear theory, and

a nonlinear model using a non-interacting test particle approach to solving the electron

guiding center coordinate system equations of motion in assumed cold cavity RF fields

for ridged cavities. The ridged cavity systems which we studied have good potential for

producing high frequency radiation from high harmonic emission. Our studies can be

used to provide direct theoretical support for the ridged rectangular cavity experimen-

tal program being conducted by Ferendeci [1]. Two papers were submitted for journal

publication during this contract period and one paper was presented at the Eleventh

I



International Conference on Infrared and Millimeter Waves. Copies of the papers are

given in the Appendices.
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U. TECHNICAL REPORT

A. DISCRETE HAMILTONIAN METHOD

In order to test the discrete Hamiltonian method in relatively simple circumstances,

Dr. Decyk and Dr. Menyuk studied one-dimensional electrostatic plasmas, which were

either Maxwellian distributed or had a warm beam present. The discrete Hamiltonian

method is predicated on two basic ideas: 1) By integrating over unperturbed orbits, it is

possible to take time steps which are substantially longer than is possible using leapfrog

codes which simply extrapolate linearly in phase space. 2) The equations of motion

of a closed plasma (including electromagnetic interactions) are Hamiltonian. There-

fore, by retaining this property in the discrete equations, one avoids certain nonlinear

instabilities which can be very damaging to the long-term behavior of the system.

In principle, the discrete Hamiltonian equations can be written such that the

discrete change in the particle spatial coordinate and momentum Ai and Afi depend

on the initial value of X and the final value of - When integrating over the unperturbed

orbits, we do not assume that the field is frozen, the assumption which is generally

made in leapfrog codes. Instead, we assume that the waves vary according to the linear

dispersion relation. This assumption allows us in principle to take time steps which

are long compared to the linear mode oscillation period, but are short compared to

the nonlinear time scale. Our formulation requires us to sum over the different linear

modes in the system. In the one-dimensional, electrostatic problem which we have

3
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studied, the discrete equations describing the particle push may be written as [2]

,(n,, -o ,,h/k) o [W -+(kv ),+ I]

-co(k + )},

z "+I- n n L,, m I ) sin [kz"+ (kvl+l - Wt)r+ o]
k 

I]

-sin (kZn + on~) _ (kvn+l - wk) r coo [k*n + (kv"~' - (Uk) r + on]
(1)

where the superscript n indicates the time step, the subscript k indicates the mode

number, and the ordinary variables k and w are the wavenumber and frequency respec-

tively. The variables r, ( , 4, and vk give respectively the size of the time step, the

mode potential, the mode phase, and the phase velocity. In the sum over k, we must

distinguish between forward-going and backward-going waves. We do so by use of the

particle current as well as the charge. Writing

-± = (k 2/47r) fjj, cos (-w±,tkr + 0k),
(2)

s = (k 2/4r) -fk sin (-W±kr.+ 4A±),

we find

C + = (1/2)(pk, + kjkr/Wk), C = (1/2)(Pkr - k~jkr/Iwk),
(3)

S+ = (1/2)(pk, - kjkiwk), S-= (1/2)(pj, + kjk,/Ak),

where + and - indicate respectively the forward-going and backward-going waves while

the subscripts r and i indicate the real and imaginary parts of the charge and current

in the usual Fourier decomposition.

Equations (1-3) are only weakly implicit; that is to say that the discrete equation

depends on the field at the beginning of the time step. As a consequence, one can solve

for the change in x and v directly for each particle using Newton's method.

4

7m Cm 
m m n . .



I

It is natural to inquire whether the lack of time-centering of the fields which this

represents has any bad effects. It is possible, in fact to write down a strongly implicit

form of (1) which in time-centered and strongly implicit

"+ =-E m(,+1 - wk/k) coo [kzf + (kv++ - wk) r+

m(ti+l - Wkk) coo (kz" + O) }
1t+ n@ + n+ (,o-+n, +l

z + - F-+" - w,/k) 2  sin [kz" + (kvR+l - wk) + O ]
kI

- (k,,+l - Wk) rcos [kZ,, + (kV,,+l - WA), + ,+'] }
-k/k sin (kzn - on)

(4)

The linear dispersion relation which results from (4) agrees exactly with the linear

dispersion relation obtained by solving the continuous, exact equations of motion, in

contrast to (1) which has small differences. We tried solving (4) using a predictor-

corrector approach. Remarkably, however, this approach did not converge. We will

return to the reason for this later. As a consequence of this non-convergence, we

always used (1) in practice.

The first problem we faced in solving these equations is that calculating all of

the sine and cosine functions in (1) for each of the modes proved to be prohibitively

expensive even for a restricted number of modes (16 or 32 in practice). To deal with

this difficulty, we wrote the code, including the Newton's method iteration, to take

advantage of vectorization on the CRAY computers (where we ran our code) and also

to make maximum use of recursion relations. Through the use of these relations, it is

possible to reduce the number of cosine and sine evaluations to one each per particle per

time step. With these changes, each time step in our code was a factor of 5 longer than

raSm mmm m m •m



in an optimized leapfrog code. Thus, the crossover point to obtain computational time

saving occurs when wp. - 1, a value which we regularly exceeded in our calculations.

Menyuk and Decyk [3] have already reported that when modes are present with

phase velocities in the bulk of the plasma, the discrete Hamiltonian approach is strongly

unstable. The reason is that the wave amplitudes fluctuate rapidly on a time scale

about equal to w- and the code cannot follow these fluctuations since they violate the

assumption that wave amplitudes change slowly on the linear time scale. While the

fluctuations are due to the use of discrete particles, little improvement is obtained in a

thermal simulation plasma by increasing the number of particles. The time scale of the

fluctuations scales like the trapping times in the individual k-modes, rTluct c Ek / 2

and Ek oc N- 1 12, where N is the number of particles. Hence, rTfict cc N - I/ 4 and

increases only weakly with N. Our constraint is r < rTj uct for stability. We have

verified that increasing the number of particles in our simulation by a factor 16 allows

approximately double the size of r before the strong instability sets in. When it is

present, it occurs on a time scale wpeT t-10-20 for the cases we ran, where T is the

total run time.

During this contract period, we also found a new source of numerical instability

which occurs on a very long time scale, wpeT = 300 when wper = 4 and wpeT = 400

when wpr - 3. This instability and its effect on phase space is shown in Figure I

in the case wper = 3. We at first thought that this problem was due to the lack of

time centering in the fields, but, as previously noted, taking predictor-corrector steps

to center the fields did not converse and thus only exacerbated the problem. The real

culprit turned out to be rapid fluctuations in the field amplitudes due to the random

particle assortment which still occurs even when the waves' phase velocities are outside

the bulk plasma. Indeed, these rapid fluctuations also account for the failure of the

predictor-corrector scheme to converge. To deal with this difficulty effectively, it is

necessary to use quiet start techniques [4]. The dramatic improvement which results

6



can be seen by comparing Figure 2 with Figure 1. It should be noted, however, that

the use of quiet start techniques is not a solution over indefinitely long times. At

wpeT = 450, the particles have clearly been randomized. On a longer time scale, we

anticipate that the plasma will once more be numerically unstable. This problem can

in principle be eliminated by periodic regridding [4]. We have not, however, explored

this question ourselves, feeling that this instability occurs on such a long time scale

that it is unlikely to be of interest in most cases.

Finally, we have studied the beam-plasma instability, using a 10%, a 1%, and a

0.1% beam. The beam amplitude is lowered by decreasing q and m for each particle

in the beam, holding q/m constant, rather that by decreasing the number of particles,

in order to obtain a reasonable beam resolution. The phase space evolution is shown

in Figure 3 for the 10% beam. The trapping and thermalization of the beam is readily

apparent. In Figure 4, we show the evolution of the field energy for the three different

amplitude beams. As expected, the instability becomes less energetic when going from a

10% beam to a 1% beam, and disappears for a 0.1% beam. These results are consistent

with the results of a comparison leapfrog code which we have run.

We conclude that while the discrete Hamiltonian method is not simple to imple-

ment in practice, it can be useful in situations where the number of modes needed is

small and long time steps are required.

7
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B. DEVELOPMENT OF GYROTRON MODELING TOOLS

The first stage in the implementation of the discrete Hamiltonian method to gy-

rotron modeling is the choice of a device to study and the development of a set of basic

gyrotron models, based upon conventional approximations and techniques, which can

be modified and expanded upon. As initial devices to investigate, we have chosen a

high harmonic ridged rectangular cavity and a ridged co-axial cylindrical cavity gy-

rotron oscillator. The cavity cross sections for the two devices are shown in Figures

5a and 5b. The emission harmonics are defined by sfl/,y = w, where w is the cavity

frequency and a is the harmonic number. As emission for the gyrotron occurs at har-

monics of the electron cyclotron frequency, high frequency emission implies either the

use of large magnetic fields or high harmonic operation. If frequencies as high as the

millimeter wave regime are to be achieved using conventional magnets, one must use

third and higher harmonics. Studies of gyrotrons with ridged rectangular tubes 1, 5-9]

and ridged cylindrical tubes [10-18] indicate that the ridged cavity structure provides

an excellent high harmonic interaction and good mode selection.

To aid us in our understanding of ridged gyrotron oscillators, we have developed

a detailed linear theory for the interaction between the electron beam and cavity RF

field. Our model treats gyrotrons with ridged cross-sections whose basic symmetry is

either rectangular or cylindrical. The model calculates the start-oscillation condition,

QP&, where Q is the cavity Quality factor and P, is the initial beam power. The

start-oscillation condition determines the beam power at which a cavity will oscillate

and is needed both for an oscillator design and to investigate mode competition. The

linear model also solves for the shift in the cavity resonance frequency w caused by

the presence of the electron beam. It provides an excellent basis for benchmarking our

nonlinear codes, and is also an aid in the design of an optimum high harmonic ridged

8

S i mml mmnmlm m mmm m mm~d mmmm m



cavity gyrotron. Details of the model are given in the Appendices which contains papers

which have been submitted for journal publication.

With our linear model in hand, we turned to the ridged rectangular gyro-TWT

amplifier work of Ferendeci and Han [1, 5-8] and the ridged cylindrical gyrotron oas-

cillator modeling of Chu and Dialetis [14-15] to begin a program of investigation of

ridged cavities. A comparison of our modeling of the ridged cavity RF field with that

of Ferendeci and Han revealed that while there was exact agreement between our ap-

proach and the basic equations describing the RF field, the solutions for several of the

resonant frequencies differed. Upon a careful examination of the RF field described in

Han's PhD thesis [5], we have concluded that extraneous terms had been included by

Han in the solution of the cavity frequency dispersion relation. For the TE02 mode

which Ferendeci and Han believed to be optimal for their design, no discrepancies exist

with our calculations.

We find, in agreement with Ferendeci and Han, that the addition of ridges greatly

enl.ances the interaction between the electron beam and the RF field at high harmonics.

Figure 6 shows the TE021 start oscillation condition as a function of magnetic field Bo

for a smooth walled rectangular cavity suggested by Ferendeci and Han. See Figure

5b. The electron beam is placed in the center of the cavity to allow as large a Larmor

radius as possible. For the smooth walled cavity and the chosen beam position, there

is emission only at even harmonics. With increasing harmonic number the gyrotron

interaction rapidly weakens, and the required start oscillation condition increases. The

addition of ridges to the cavity creates strong fringe fields about the ridge openings as

is evident from Figure 7. These fringe fields lead to a strong high harmonic emission. In

Figure 8, we show the result that adding ridges has upon the start oscillation condition.

The gyrotron emission interaction now occurs at all cyclotron harmonics. The high

harmonic start oscillation condition is very low, and even decree. with increasing

harmonic number. Ferendeci and Han [1, -8] did not analyze their equations and

9
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did not find this effect. Harmonics greater than 6 for the TE0 2 1 mode have Larmor

radii which would cause the beam electrons to strike the cavity wall and thus are not

included in the figure.

Modes other than the TE02 1 mode may be excited by the electron beam. In Figure

9 we show the start oscillation condition for the modes TEn3 1 where m = 0,1, 2 and

n = 1, 2,3,4,5. What is evident from this figure is that other modes have high harmonic

resonances with start oscillation conditions smaller that that of the sixth harmonic of

TE021. Also, the harmonic emission resonances of TE021 are likely to suffer from mode

competition from the other strong emission resonances. As our treatment of the RF

cavity field modes is approximate (only one expansion term is used in the ridges) the

cavity frequencies for the modes and therefore the values of the background magnetic

field for the harmonic resonances cannot be exactly determined from our present theory.

The relative positions of the harmonics in Figure 9 ishovld therefore be taken as an

indication of possible mode competition and not a definitive statement as to where it

will exist.

Start oscillation calculations were conducted for the ridged cylindrical cavity as

well. In Figure 10 we show for an axis encircling beam how the presence of the ridges

can greatly reduce the value of QP 6 . We found that our model agrees with the value

of QPb calculated for the electron cyclotron maser interaction by Chu and Dialetis

[14-15]. However, Chu and Dialetis did not include the peniotron resonance in their

modeling. The peniotron interaction, which can lead to a very high peak efficiency

[191, is always present in gyrotron devices along with the standard electron cyclotron

maser interaction. As the peniotron interaction was actually the stronger interaction

over much of the parameter space considered by Chu and Dialetis, the values given in

their paper for the minimum start oscillation condition are not correct.

In addition to the linear, ridged model, we have also developed a nonlinear, ridged

gyrotron model. The nonlinear model uses a non-interacting test particle approach to

10
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solving the electron equation of motion

- d U5

using the assumed cold cavity RF fields. (See the Appendices for a description of

2 the ridged cavity fields.) In (5) C is the dimensionless momentum vector, U = Y,

where -y give the particle energy and P is the velocity in terms of the speed of light.

Dimensionless units scaled to the cavity length R are used in the modeling so that

the results are able to be scaled to any frequency cavity. The nonlinear code uses the

standard gyrotron modeling approach in that the RF field in expanded in terms of the

cyclotron harmonics in an infinite sine-Bessel series about the electron guiding center.

In the code, this sum is truncated to a small set of terms, typically 3-10. If only one

harmonic expansion term is dominant, then using the fact that (w - sW/)t wt, a

slow time scale treatment can be used to take time steps much larger that the cyclotron

period. Comparison in the weak field limit has shown good agreement between the

linear theory and the nonlinear model.
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IV. FIGURES
S

Figure 1. Development of the weak numerical instability due to wave amplitude fluctuations

(wpT = 3, N = 40,000, nmode = 16). a) w, 6T = 300, b) w1,oT = 450, c) field

energy vs. time.

Figure 2. Effect of a quiet start on the weak numerical instability (same parameters as in

Figure 1). a) wp.T = 0, b) wpeT = 450, c) field energy vs. time. Note at T = 0,

the regular pattern characteristic of quiet start simulations.

Figure 3. Phase space plots of the beam-plasma instability (10% beam, Ntot.1 = 32,000,

Nbeam = 3,200, wper = 2, nnode = 16). a) wpT = 0, b) wp.T = 50, c) wpeT = 100.

* Figure 4. Field energy vs. time. a) 10% beam, b) 1% beam, c) 0.1% beam.

Figure 5a. Cross-section of the ridged cylindrical gyrotron.

Figure 5b. Cross-section of the ridged rectangular gyrotron.

Figure 6. TE0 21 mode start oscillation condition for a smooth walled rectangular cavity for

an electron beam with energy 72 keV and P3, = 0.28. The cavity parameters are

L. = 2.1987R and L, = 15R. The resonances are labeled by their harmonic

number.

Figure 7. E. RF field for a ridged rectangular cavity with L. = 2.1987R, Ro = 1.1983R,

w = 0.05455R, and N = 3.

Figure 8. TE0 21 mode start oscillation condition for a the ridged rectangular cavity for an

electron beam with 72 keV and 6, = 0.28. The resonances are labeled by their

harmonic number.

Figure 9. TEm.i mode start oscillation condition for a the rid&ed rectangular cavity for an

electron beam with 72 keV and /, = 0.28. All modes with m = 0, 1, 2 and n = 1,

2, 3, 1, 5 are shown. The arrow shows the TE021 6th harmonic emission resonance.

Figure 10. Variation of the start oscillation condition for the third harmonic electron cy-

clotron maser interaction (solid curves) and second harmonic peniotron interac-

14



tion, (dashed curves) as a function of d/a for the TE3 11 mode. Note that in the

notation used here that d/a = R./R. The beam axial velocity is (,=0.1. The

cylindrical ridged cavity parameters are 0. = r/2N and N =6.
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GYRO-PENIOTRON EMISSION IN A MAGNETRON-TYPE CAVITY'

P. VITELLO

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
- MCLEAN, VA 22102 USA

ABSTRACT

We present here a new linear theory formulation of the average energy loss via
the electron cyclotron maser and peniotron interactions in a slotted magnetron-type
cavity. Use is made of the linear theory results to study start oscillation conditions and
mode competition for the high-harmonic gyro-peniotron oscillator. For a magnetron-
type cavity, the gyro-peniotron is found to have the same sensitivity to guiding center
spread as for a smooth walled cavity. Mode competition, as well as the start oscillation
beam power can be reduced however in a slotted cavity geometry. In the non-linear
regime, the saturated emission efficiency for a magnetron-type cavity gyro-peniotron is
predicted to be as large as has been calculated for a smooth walled cavity device.

INTRODUCTION

The gyro-peniotron oscillator is a device with the potential for extremely high sat-
urated efficiencies for RF emission. Theoretical modeling[I -1 suggests that efficiencies
(perhaps as great as 80-90%) can be obtained for electron beams with finite velocity
and guiding center spread. Even though the peniotron interaction may lead to higher
saturated efficiencies than the electron cyclotron interaction, in the weak field linear
limit the cyclotron maser interaction is generally very much stronger. The relative
weakness of the peniotron interaction can lead to mode competition and inlerlerence
from cyclotron maser modes with lower start oscillation beam powers. Use of a slotted,
magnetron-type cavity presents a means of both lowering the gyro-peniotron start os-
cillation current, and at the same time reducing mode competition'. We give here a
new formulation of the magnetron-type cavity linear theory average beam energy loss
(.f. Reference [10]), and discuss mode competition, start oscillation conditions, and
the behavior of the non-linear saturated emission efficiency in such a system.

We will consider a magnetron-type cavity with N slots each of width 20.. The
cavity inner radius, outer radius, and axial length are respectively a and b, and L. For
such a system, the beam averaged change in energy 61 for an axis symmetric beam of
guiding center r. is given, in the linear regime, by

B2 = 0 2 - )( )  -(z) k dz 2g(z) 1

2 Pj. kig w dz

+ .:(L J(L)sf1 k-LO-Lo I) g(z)

+ 2fl (J:'l L.)gz + ) - J:2( L)g(z-))
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where it, = kj.r,, 1 L = k.LrtL, k.L is the perpendicular wavenumber, rL is the Larmor
radius, r = m + jN, m is an integer which determines the mode, kl = irIL, w is the
cavity frequency, E in the RF field amplitude,

= - (2)

g y),(coo (wy/2 + (I - 1)w/2) 23 g Y) (Y'-1 3

and
ar = IJ'(. (4)

Dimensionless units with a as the unit of length, a/c as the unit of time, and m.c 2/1eja
as the unit of electric and magnetic fields are used. Each term in j in above relation for
61 is exactly af times the value found for the change in energy for a smooth walled cavity
with the single mode TEri.[1 1 Electron cyclotron maser emission at the sth cyclotron
harmonic comes from the terms containing g'(z) and dz 2g(z)/dz. Electron cyclotron
absorption at the ath harmonic comes from the terms in g(z). Peniotron emission at
the (a - 1)th harmonic and absorption at the (a + 1)th harmonic come respectively from
the terms in g(z + ) and g(z-). For fixed j and a, the relative strengths of each of these
interactions are the same as in the smooth cavity case.

If the beam is exactly centered on axis, only the harmonics a = r contribute to
6FI. Electron cyclotron emission occurs then at the Fth harmonics, while peniotron
emission occurs at the (F - 1)th harmonics. For N > 2 there is no interference between
the two interactions of a fixed m mode. The electron cyclotron maser interaction and
peniotron absorption may interfere with peniotron emission if there is a finite spread
in guiding centers. As the relative strengths of the interactions are the same as in the
smooth cavity case, the limits on guiding center spread are also the same (see Reference
[11j). Even with zero guiding center spread, mode competition may take place between
peniotron emission from the desired operating m mode and electron cyclotron maser
emission from different m modes. Such mode competition can be a serious problem for
the high-harmonic smooth walled gyro-peniotron.[1J A N slotted magnetron-type cavity
cavity has an imposed Nth fold symmetry, however, which is lacking in a smooth walled
cavity. Operating at the high-harmonic m = r = . = N/2 optimizes the amplitude ar,
leading to a very strong beam to cavity coupling. For m modes that do not "fit" well
into the cavity symmetry, ar is quite small and the beam to cavity coupling is weaker.
The overall effect is a reduction in mode competition between the m = N/2 mode and
other m modes. Besides this reduction in mode competition, a slotted cavity can also
have the desirable effect of moving the RF field radial peik inward towards the beam.
This produces a stronger interaction, decreasing the start oscillation current, which is
relatively high for the smooth walled gyro-peniotron1Ol°

In the non-linear limit, as in the linear regime, neighboring a harmonics, differ by
at least by N for a beam with small guiding center spread about the axis. If N is large
and is one operates at the mode m = N/2, only the a = N/2 harmonic will show a
strong coupling between the beam and the cavity. The other harmonics are weaker due
to having either much smaller amplitudes ar or due to the beam particles experiencing
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very large phase drifts relative to the RF field during their passage through the cavity.
Since only one harmonic would therefore be involved in gyro-peniotron magnetron-
type cavity interaction, we expect the same extremely high saturation efficiencies to be
obtainable as have been calculated for smooth cavity systems.[31

CONCLUSION

We show from a linear theory analysis of a slotted magnetron-type cavity oscillator
that for each .th harmonic of the cyclotron frequency, the relative relative strength of the
electron cyclotron maser interaction and the peniotron interaction terms are the same as
for a smooth walled cavity. This leads to a gyro-peniotron with a magnetron-type cavity
having the same sensitivity to guiding center spread as is found for a smooth walled
system. The optimized saturated emission efficiency for the slotted cavity is predicted
to be also as high as has been calculated for the smooth walled gyro-peniotron. A
slotted cavity design is likely to be preferable, however, as the imposed symmetry can
lead to a reduction in mode competition, and to a decrease in the start oscillation beam
current.
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Start oscillation conditions; are considered for slotted rectangular gyrotron cavities.

The energy loss of the electron beam to the cavity RF field is presented in a form where

the geometric and the gyrotron instability terms at each harmonic have been separated.

It is found that the addition of slots to a cavity lowers the required beam power for the

start oscillation condition and can lead to a decrease of the start oscillation beam power

as the harmonic number is increased. Previous gyrotron cavity designs have consistently

shown the start oscillation beam power increasing with harmonic number. These slotted

devices thus appear potentially attractive as a means of achieving millimeter wave

emission for use in RF heating and plasma diagnostics.

C PACS numbers: 85.10.Ka
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I

Emission in a gyrotron occurs at the harmonics of the electron cyclotron frequency.
£

Promising applications for high power, high frequency gyrotrons include plasma heat-

ing, advanced accelerators, and spectroscopy. As the frequency increases, however,

either large magnetic fields must be used or operation at high cyclotron harmonics

is required. Presently, most gyrotron development has focused on devices using the

first or second harmonic.1" These low harmonics necessitate either the use of a super-

conducting magnet or a pulsed magnetic field if millimeter and sub-millimeter wave

frequencies are to be achieved.

High harmonic gyrotron emission has been demonstrated for several tube designs.

Using smooth-walled, cylindrical cavities with an axis encircling beam, harmonics as

high as m = 11 have been observed for a TEn 15 "whispering gallery" mode gyrotron

oscillator. 4- 5 High energy, large Larmor orbit beams are required for "whispering

gallery" mode gyrotrons as the modes are concentrated towards the wall of the cavity.

Also with an axis encircling beam with high energy (2 MeV) electrons, strong emission

at the 12th harmonic has been generated using a slotted cylindrical tube.6 Further

investigations of slotted rectangular and ridged rectangular tubes7 -9 and of slotted

cylindrical tubesIO- 1 has shown that even for moderate beam energies, strong high

harmonic fringe fields can be positioned at the beam orbits. All of these studies show

that slotted structures greatly increase the high harmonic interaction in a gyrotron.

While high harmonic gyrotron oscillators and gyro-TWT armplifiers have been

studied for cylindrical slotted tubes, only gyro-TWT amplifiers have been been inves-

tigated in any detail for rectangular slotted systems. In this letter, we study high

harmonic emission in rectangular, slotted gyrotron oscillators. We find that the addi-

tion of slots to a rectangular gyrotron cavity greatly enhances the interaction between
(

the electron beam and the cavity RF field at high harmonics. This enhancement is so

great that, under some circumstances, the interaction strength can actually increase
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with harmonic number. As a consequence, these devices are a potentially interesting

source of millimeter wave radiation.

The slotted rectangular cavity considered is shown in Figure 1. We will use N to

designate the number of slots and L, the axial length of the cavity. The inner and

outer slot y dimensions are R and 14, while the cavity width in the z direction is given

as L.. The distance 2d between the slots equals twice the distance from the first or

last slot to the tube wall, while the slot width is 2w. We exrect that qualitatively

our results would apply to other slotted or ridged rectangular cavity designs which

show strong fringe fields, such as that used for the peniotron. 1 l- 2° In the following we

make use of dimensionless units, with the cavity transverse length R being our scaling

parameter. In these units, length is measured in units of R, frequency in units of c/R,

and the background magnetic and RF fields are measured in units of m.c2 /eiR, where

m, is the electron rest mass, e is the electron charge, and c is the speed of light. The

dimensionless cyclotron frequency flf/y is equal in these units to Bo/1- where B. is the

assumed constant background axial magnetic field and -y is the Lorentz factor.

To determine the RF fields, it it convenient to expand the RF field separately in

the cavity proper (Region I) and in the slots (Region H) in terms of the local regional

eigenfunctions, and to then match the fields across the slot openings. We take the

relative phase dependence of each of the N slots as being cos[w(q + 1/2)m/N], where

q = 0,..., N - I is the slot number. The value of the mode number m determines

the overall mode. The 2w mode corresponds to m = 0, while the w mode is given by

m = N. In order to obtain a closed analytic form for the field solution, an infinite

sum over r, where k. = r r/L., is used only in Region I, with just a single term,

k. = 0, being kept in Region HI. This approximation is described in Ref. 7. Only the

non-negative terms which satisfy r = 2Nj ± m, and j = 0, 1,2,... are allowed. The

cavity frequency, w = (k_ + k2) 1/2, for the th axial mode (k. = /L) is determined
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from the cavity mode m by solving the dispersion relation

2NwE kr sin (k,, ) 2 cot (k) =cot [k (I- )]1
L r 1 I w k,

where k., = - kI )/.

To solve for the interaction of the beam with the TE RF cavity field and a constant

axial magnetic field we have used the linearized relativistic single particle equation of

motion, dU/dz = -(-y/U,) [.9 + (CU x .6-t)] in the guiding center coordinates (z,,

yg,), where 17 = 'y1 is the product of the electron velocity #" and the Lorentz factor.

After averaging over initial time t. and phase angle 9o of the beam, the change in the

beam energy after passing through the oscillator cavity (6&y)to . can be calculated using

the standard techniques of linear theory.7, 21 The details will be presented elsewhere.

We find that (6-y)t.,o. can be expressed in the compact form

00 2
( EArDr, [Re( $-)+nIm(*))j, (2)

where Ar is the rth amplitude of the RF field in Region I, P-. is the . harmonic

contribution to the guiding center expansion of the rth RF field term, and J gives

the a harmonic gyrotron interaction termi. Again, only the non-negative terms which

satisfy r = 2Nj ± m, where j = 0,1,2,... are allowed in equation (2).

The full behavior of (6-y) t. 9. is given by equation (2). The guiding center depen-

dence is contained entirely in the factor IIr ArDr.12, which is sensitive to the fringe

fields generated by the slots -while the resonance behavior as a function of magnetic

field about the cyclotron harmonics is given by . which contains the cyclotron maser,

Weibel, and peniotron resonances. The contributions from Re()) and Im (.) re-

spectively determine the gyrotron start oscillation beam power and resonant frequency

detuning.

Equation (2) can be simplified if a ribbon beam parallel to the z axis is used.

Averaging over the zxg guiding center position leads to a reduction of the double sum

34



r

over cavity eigenfunctions inherent in I-r Ar Dr'I1 = Er Ar*Dr*, EA AADA., to a single

sum if the ribbon beam is uniformly distributed at a fixed yg,. After averaging the

product Er A' D. EA AADA. can be replaced by a factor of the form Er ArDr.

Realistically, however, the averaging can not be taken from z. = 0 to z,, = L. as the

beam can not be placed closer to the cavity wall than its Larmor radius. If m = 2Ni,

where i = 0,1,... then there is a N-fold periodicity in z for the RF field and the

I simplifying guiding center averaging can equivalently be taken over any of the regions

from zO = L 2 (j/N) to zx L(k/N), where 0 < j < N - 1, and j < k < N.

This also implies that the guiding center averaged energy loss (6-Y)t . would be

unaffected by the extension of the cavity in the z direction to include addition slotted

regions.

The cavity geometry determines k± and the magnitude of each a harmonic con-

tribution to the overall RF cavity field of a particular mode. For each a harmonic, .

varies with the cavity geometry only through changes in k_.. Since the addition of slots

may geaerate strong fringe fields without a significant change in k1 , the predominant

change at high harmonic to (-y)t. . generally comes from the factor I E'r ArDr.I 2 .

The start oscillation beam power and the frequency detuning equation for steady

state operation for any TE mode can be found directly from (6-I)t. ... Taking the

unperturbed beam energy to be Pb, the total net energy transferred from the beam to

the cavity fields is given by Pb(6_Y)t.'o./(y7 - 1).22 Quite generally, the starting power

can be given by

QPb = -8.6 x I0W(oy. - 1)/Re((6y)t. v.) kW, (3)

and the frequency detuning due to the presence of the beam is

W - Wo I I ((6)t.V-) (4)
WO 2Q Re((6&)t..)'
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where V in the time averaged, volume integrated RF field energy of the cavity, and w.

is the cold cavity frequency. For gyrotron tubes, the quality factor Q is due mainly to

diffiractive losses and, with an accurate estimate of its value obtained from cold cavity

tests, provides a good approximation of the actual start oscillation power required. By

contrast, the linear theory values for the frequency detuning often differ significantly

from the detuning under normal high field operating conditions22 and should used with

caution.

We find that the addition of slots can not only enhance enormously the high

harmonic interaction and hence greatly lower QPb, but this enhancement at fixed beam

position can increase with increasing harmonic number. This rapid decrease in the

start oscillation condition with increasing harmonic number has not previously been

noted for any gyrotron device. We note that the strongest coupling to our cavity slots

occurs for m = 0 modes. For these modes the following parameter range was found

to result in strcng high harmonic interaction with increases with harmonic number:

I sin kLj- I - 1 (implies large fringe fields generated by the slots); L. < 2N/n, where n

is the transverse y mole number (all k.r for r : 0 imaginary); and sin 2rNw/L. = 1

(strong beam coupling to the lowest order r 0 0 fringe field term). We expect proper

beam placement in other cavity designs with fringe fields similar to those in a slotted

rectangular cavity would also result in enhanced high harmonic coupling with increasing

harmonic number.

As an example of how the addition of slots to a rectangular cavity gyrotron oscil-

lator enhances the high harmonic emission we will consider the start oscillation con-

dition QP for the cavity and beam parameters investigated by Han and Ferendeci 7

for a slotted rectangular cavity gyro-TWT. For the cavity mode we use m = 0, 1 = 1,

and the second y transverse mode (i.e. the TE021 mode), which Han and Ferendeci

found to give strong sixth harmonic emission. The cavity parameters are L. = 2.186,

L,= 15, R, = 1.198, to = 0.05466, and N = 3. For the beam parameters we
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use a total energy of 70.82 keV, and js = 0.268, which corresponds to Ny = 1.139,

U.,. = 0.45086, and U. = 0.30514. The electron beam is centered in Region I at

Zgg = Lz/2, VV, = R/2. Figure 2 shows the variation of the magnitude of the RF

elctrc field, lEt = (E + E, / Eo sin(k.:), acrai the cavity opening for them pa-

rameters. Shown in the figur are the values for the total field energy per unit length,

WV = W/L,, and the field energy per unit length in the slots, WA. The large fringe

field observed in this figure couples very strongly with high harmonic emission. This

coupling will be significant at high harmonics since with rising harmonic number a

the growth of the the Larmor radius, rTL = a../wl, allows the beam to increasingly

penetrate the fringe fields. In Figure 3 we show QP as a function of magnetic field for

multiple harmonic emission. Harmonics greater than the sixth are not shown as the

beam Larmor radius would be greater that one-half the cavity width R. For compari-

son, we also show QPb for a smooth-walled rectangular cavity. For the slotted cavity,

harmonics for a = 1-3 are dominated by the electron cyclotron maser instability. The

fourth harmonic is due to tht peniotron instability. For harmonics a > 5, both the

electron cyclotron maser and peniotron instabilities strongly contribute.

As the sensitivity to guiding center is of great importance, we have given in Figures

4a-4d the function V lEr ArDrI / /2 for s = 3,4,5,6. Only the portion of

Region I which is at least one Larmor radius from the cavity walls is considered. From

equation (3) it is clear that QP& oc (p)-2. One can see that the interaction at each

harmonic rapidly increases near the slot openings due to the fringe fields, and that for

a = 3,4, 5 there are values of y.. for which there is little eependence on xg, of the beam,

cavity-coupling. These values would be ideal for the placement of a ribbon beam with

an extensive z width. For sixth harmonic operation with a ribbon beam, the cavity

design would need to be modified to reduce the rapid variation in QA. with xre in the

accessible region of the cavity.
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For our example, the strong high harmonic coupling which increases with harmonic

number was observed even when the beam quality was decreased by assuming a guiding

center spread $ZO 4 0.2, 6gc < 0.1, and an axial velocity spread b6, < 0.2#,. A

Gaussian axial velocity distribution was assumed with constant beam energy. The net
t

affect was actually to decrease QA as the interaction strength in the linear regime is

a rapidly increasing function of both V.. and #;'I. In general, the magnitude of the

beam quality affects will depend upon the details of the gyrotron design.

In conclusion we find that the high harmonic interaction observed here for the

slotted rectangular cavity shows great potential for the practical development of a high

frequency, low magnetic field gyrotron oscillator. Very high power sources are possible

in a wide cavity with multiple slots if a ribbon electron beam is used to reduce space

charge limitations. As the basic gyrotron instabilities do not depend upon the cavity

geometry, high efficiency emission is expected for the slotted rectangular gyrotron, es-

pecially if the system is optimized for omLision via tLe peniotron interaction.23 Further

research into the questions of mode competition and non-linear efficiency needs to be

carried out in order to determine how bes,% to take advantage of the slotted cavity fringe

field interaction for gyrotron devices.

This work was supported by the AFOSR under contract F49620-86-C-065.
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Figure Captions

FIG. 1. Cross-section-of the slotted rectangular gyrotron.

FIG. 2. RF electric field magnitude across the slotted rectangular cavity for the TE021

mode. Contours are shown at intervals of 1/15 of the maximum value of JEJ.

FIG. 3. TEo21 mode start oscillation condition for the rectangular cavity. The solid curves

gives QP for the slotted cavity, while the dashed curve gives QPb for the case

without slots. Each emission resonance is labeled by its harmonic number a.

FIG. 4(a). Surface and contour plot for it for a = 3. Contours are shown at intervals of 1/15

of the maximum value of o'.

FIG. 4(b) Surface and contour plot for P' for a - 4. Contours are shown at intervals of 1/15

of the maximum value of E '.

FIG. 4(c). Surface and contour plot for t' for a = 5. Contours are shown at intervals of 1/15

of the maximum value of E '.

FIG. 4(d). Surface and contour plot for P for a = 6. Contours are shown at intervels of 1/15

of the maximum value of t.
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FIG. 1. Cross-section of the slotted rectangular gyrotroni.
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FIG. 2. RF electric field magnitude across the slotted rectangular cavity for the TE0 21
mode. Contours are shown at intervals of 1/15 of the maximum value of JEl.
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FIG. 3. TE021 mode start oscillation condition for the rectangular cavity. The solid curves
~gives Q € for the slotted cavity, while the dashed curve gives Q/ for the case
I without slots. Each emission resonance is labeled by its harmonic number a.!
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FIG. 4(a). Surface and contour plot for P for a =3. Contours are shown at intervals of 1/15

of the maximum value of t.
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FIG. 4(b) Surface and contour plot for £for a = 4. Contours are shown at intervals of 1/15
of the maximum value of P.
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FIG. 4(c). Surface and contour plot for r fors = 5. Contours are shown at intervals of 1/15

of the maximum value of es.
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ABSTRACT

A linear theory analysis of gyrotron oscillators with slotted cross section is used

to calculate the net change in beam energy (6"y)to V.. In our new formalism, geometric

factors are clearly distinguished from the geometry-independent harmonic resonance

terms which are due to the fundamental electron cyclotron maser and peniotron in-

teractions. This separation of the interaction terms from the geometric factors greatly

simplifies the physical analysis, and leads to a very compact form for (8"y), o The

theory is applied to slotted rectangular oscillators (which have not previously been

treated) and to slotted cylindrical oscillators to show that a unified expression can

be obtained for the start oscillation condition. In sample applications of our theory,

it is demonstrated that slots lower the start oscillation condition in both cylindrical

and rectangular geometries, and can lead to a decreaoe in this condition as harmonic

number is increased in the rectangular geometry. The use of these slotted devices thus

appears quite attractive in the millimeter wave regime. We also find that the peniotron

interaction, which is easily identified in our formalism, may be very strong in slotted

cavities.
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I. Introduction

The gyrotron is well known as a coherent microwave source capable of generating

unprecedented power levels. Gyrotron emission occures at harmonics of the electron cy-

clotron frequency. As the emission frequency increases either large magnetic fields must

be used or operation at high cyclotron harmonics is required. Presently, most gyrotron

development has focused on devices using either the first or second harmonics [1-31.

These low harmonics necessitate the use of a superconducting magnet if frequencies as

S high as the millimeter and sub-millimeter wave regimes are to be achieved.

fHigh harmonic gyrotron emission has been achieved for several tube designs. Using

smooth walled cylindrical cavities and an axis encircling beam, harmonics as high as

m = 11 have been observed for a TEmi "whispering gallery" mode gyrotron oscillator

[4-51. A high energy, large Larmor orbit beam is required for "whispering gallery"

mode gyrotrons as these modes tend to concentrate the RF field towards the wall of

the cavity. Also using an axis encircling beam with high energy (2 MeV) electrons,

Destler et al. [6] have reported the generation of a strong burst of microwave radiation

at the 12th harmonic from a slotted cylindrical tube. This new interactive slotted

structure leads to an excellent high harmonic interaction and good mode selection.

Further investigations of slotted cylindrical tubes [7-151 and of slotted rectangular and

ridged rectangular tubes 116-191 has shown that even for moderate beam energies,

strong high harmonic fringe fields can be positioned at the beam orbits. Two slotted

tube geometries, shown in Figure 1, have been investigated in detail; these are the

cylindrical (or magnetron type) geometry, and rectangular geometries, both slotted and

ridged. As there is no real distinction between slotted and ridged tubes, we will refer

to them all as slotted. Both gyro-TWT amplifiers [7-101 and gyrotron oscillators [11-

* 15J have been studied theoretically in slotted, cylindrical geometries. For rectangular

geometries only gyro-TWT amplifiers have been studied in detail for slotted cavities
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1,

[16-19]. All of these studies show that slotted structures greatly increase the high

I harmonic interaction in a gyrotron relative to a smooth wall design.

In this paper we extend the modeling of slotted gyrotron oscillators by presenting

a linear kinetic theory applicable to gyrotrons of both rectangular and cylindrical cross

B section design. In our analysis we calculate the net energy loss of the beam, (6 ")t .,

which is needed to determine the cavity start oscillation condition and the frequency

detuning. We give (6-I)t.. as a sum over harmonics in which each harmonic contri-

P bution consists of a geometry-independent factor due to the fundamental interactions

and a geometry-dependent factor which varies from device to device. The geometry-

independent factor consists of clearly distinguished terms due to the electron cyclotron

I maser and peniotron interactions.

This paper is organized as follows: In §11, we derive the TE mode fields in either

rectangular or cylindrical slotted cavities. Two specific examples are presented which

are then used in the remainder of the paper. In §Ill, we present our linear theory

and determine the start oscillation condition and frequency detuning of the oscillator

cavity modes. In §IV, we present sample calculations which shows both the strong

high harmonic content of slotted cavities, and the importance of peniotron emission for

these systems.
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H. Properties of Slotted Cavity Fields

Let us consider the behavior of the TE modes in a tube with a slotted cross section.

If the axial RF magnetic field is written in the form

B, = AT(z,y)f(Z)e - iwt  (1)

(where f(z) - eikah for an amplifier and f(z) = sin(kz) for an oscillator), then from

Maxwell's equations [201 the solution for AT will be an eigenfunction of the equation

(VT"- VT +I k-sIDAT = 0, (2)

subject to the boundary conditions of an assumed perfectly conducting tube wall. In

(2), k = W - k2 is the transverse wavenumber eigenvalue, and IT is the transverse

Laplacian. The transverse RF electric and magnetic fields, ET and BT may be obtained

from B, as follows,

ET =-i k- (ix r-B.),(3)
I

1 a-(JYT = j-- ZgTBz •  ('4)

Two sets of orthogonal eigenfunction basis sets are commonly used to describe AT

in slotted cavities. If the cross section is naturally specified in a Cartesian coordinate

system, then the solution

00

AT(E,y) = Ar (e-k. + are,r.) (,,,vr, + be"k,.,), (5)
r=-o .

where kzsr + kr = kl, should be used. For a cross section with cylindrical symmetry,

00

AT(r, 9 ) = ArCr(k±r)er', (6)

should be used. In (6), Cr(k±r) = Jr(k±r) + arYr(k±r), where Jr and Yr are Bessel

functions of the first and second kind. The constants Ar, ar, and br depend on the
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tube geometry. For both of these eigenfunction basis sets the coordinate dependence

is separable. The total time averaged, volume integrated RF field energy stored in the

fields, I, can in all cases be written as

V= ' V+B Y). (7)

In calculating 1, any static magnetic field energy is not included.

We now consider the RF cavity fields for two specific cases, a slotted co-axial

cylindrical cavity as shown in Figure la and a slotted rectangular cavity as shown by

Figure lb. We will use N to designate the number of slots and L, as the axial length of

the cavity. In the cylindrical co-axial cavity, the central co-axial radius is given by Rj,

while the inner and outer slot radii are respectively R and Ro. The angular width of the

slots is taken to be 20o. In the rectangular cavity, the inner and outer slot dimensions

are R and R., while the cavity width in the z direction is given as L.. The distance

2d between the slots equals twice the distance from the first or last s.ot to the tube

wall; the slot width is taken to be 2w. In the following we make use of dimensionless

units, with the cavity transverse length R being our scaling parameter. In these units,

length is measured in units of R, time in units of R/c, frequency in units of c/R, and

the background magnetic and RF fields are measured in units of mrec 2/jeIR, where me

is the electron rest mass, e is the electron charge, and c is the speed of light. The

dimensionless cyclotron frequency (I/y is equal in these units to Bo/- where B0 is the

assumed constant background magnetic field and -y is the relativistic factor.

To determine the RF fields, it it convenient to treat the cavity proper (Region

I) and the slots (Region II) as separate expansions which are matched across the slot

openings [21]. We take the relative phase dependence of each of the N slots as being

C s finq/N for the cylindrical slotted case and cos[w(q + 1/2)m/N] for the rectangular

slotted case, where q = 0,..., N - 1 is the slot number. The value of the mode number

m determines the overall mode. The 2,r mode corresponds to m = 0, while the 7r mode
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is given by m N/2 for a cylindrical slotted cavity, and by m = N for a rectangular

I

slotted cavity. In order to obtain a closed analytic form for the field solution, an infinite

sum is used only in Region I, with just the r = 0 term being kept in Region II. The RF

fields for the slotted co-axial cylindrical cavity are then given approximately by [12]

Region I

CO Frc i(k -L)]ir - t
E, = - Eo. E A' k[L r sin(kz)et(re-t), (8)

00

Ee = -iE-$. A, C"(kLr)sin(kzz)ei( r &- wt), (9)

Ex= 0, (10)

B, = Eo .E A' rc(kjr) cos(k'z)e t ~ret) (11)
k =-00

Be= & . 00 A' r r r cos(k'")ei(re-wt)' (12)

100

BS = &o 1: A C'(k-t-r)sin(ksz)eire-wt)' (13)
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Region 11

E, 0, (14)
) i21rmq/N ,iIIItL_

= 0 0 Lo r) sin(kz)e- ,  (15)

E.= 0, (16)
E. kz i2,rmq1' Arlt~rl, lL _

B,= k1  0 0 k.rcoo(k,z)e-" (17)

Bo= 0, (18)

B. = E~ei2  A 1N 4Colko l jr) sin(kzz)e - t, (19)

where

A sin(r) c'(k±)' (20)

All1 7 1 (21)0 N COI,(k.I))(1

and

Ct (k±r) = Jr(k±r) - J(k±lR,)Yr(k_±r)/Yr(k±Ri), (22)

Co'(k .Lr) = Jo(kLr) - JO(kLR.)Yo(k±r)/Y'(k.R,). (23)

A prime represents differentiation with respect to the argument. Due to the cavity sym-

metry, the only harmonics which contribute are r = m + jN, where j = 0, ±1, ±2,...

For these fields, the dispersion relation determining kj., and the total field energy V

are

0  ( sinre'9 2 C(k±) Co(k) (24)r,___ , \ to / '(±)=co"(k.1)'
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and

W2 wLZ 00 ]rr 2 [ck)2 L2- R2 (Cl (kl)] 2 (1 2
Sk2 16'E 1rJ- k2  2

[C"'(k,)] 2 + C (k_)C,(k.) (1+ W,)]

+ [RO [Co"(kLRo)]2 - [C"(k±)]2

-["(k_) -10 ,(k) (1 + )]} (25)

The slight difference between V as given in (25) and the form presented by Chu and

Dialetis [11-121 stems from our use of the field energy density E. E + B. B while

Chu and Dialetis used 2E.-E*. If the RF fields were calculated exactly, with an infinite

series expansion for both Regions I and If, then the energy in the magnetic fields would

equal that in the elect-ic fields and both expressions for V would be identical.

The rectangular slotted fields (see, e.g. 1181 for a derivation) for our tube are

Region I

E, = -i-o E ky, A' cos(kz. z) sin(k.r y) sin(k,z)e - t (26)
k2 

r

Ey = i-E 1 kr A 1 sin(kzrz) cos(kyr Y) sin(kz)e- t , (27)
k2 r

E, = 0, (28)

B. = -L E, E kxr A' sin(k, x) cos(k,,ry) cos(kz)e- w*, (29)
k2- r

B, = - .Eo 1 ky,, Art coe(kr X) sin(kr y) cos(kz),-"t, (30)
I "

B = A' cos(k. z) cos(k,ry) sin(kxz)e - "t, (31)
r
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Region H

E = -i E. cos(7r(q + l/2)m/N)' osin(ksinsin(k.z)e-w% (32)

Ey,= 0, (33)
V

E,= 0, (34)

B.= 0, (35)

BU = -- E. cos(,r(q + 1/2)m/lN)Ar 8in(k~y) co(k,)ei t, (36)

B. = E.coe(7r(q + 1/2)m/N),oco(k.,)sin(k.z)ewt, (37)

2  1/2

where, k.r = Fr~/L., kr = (k. - =r)/2, and

= 2kL sin(kzr W)(1) (38)r (1 + bro) kzrkyr sin(kyr)'
A"l k=L= (39)

N sin (k±. (1- R) ()

Only r = m + 2Nj, j = 0, 1,2,..., with r > 0 are to be included in the sums. For

m = 0, each term for r 2Nj must be counted twice. For our model of a rectangular

slotted cavity, the RF field in Region I is not affected by the presence of the slots for

the modes m = Ni, where i = 1, 3,5,..., and has the same form as in a simple smooth

walled cavity. For all other rectangular cavity modes, the dispersion relation for kL

and volume integrated energy V can be written as

2N= k1 . sin(k",W) 2 cot (k1 ) = cot [k±(. - R)], (40)
FiT- O [ -k± ] kr

and

L.Lw (i + bmO) ( 2 ( + b sin (2k.r) FkI (k /'\(2 2  
_ i'61:/= (A' + _ + ( 1' L )

1ro" Wl k2

+ 2Nw(R,-1)(A v + (in (1- ___ -1- . l(41)
4kL(1- R) W2
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I. Linear Kinetic Theory

To solve for the interaction of the electron beam with the RF field we use the

single particle relativistic equation of motion

d - - '- 1E (42)

where U = -yO is the product of the electron velocity 1 and the Lorentz factor -1. Note

that we are using time, t(z), as a dependent variable, and the axial position z as the

independent variable. The use of z facilitates the comparison of the linear theory with

the weak field limit of a nonlinear numerical modeling of the equations of motion. In
dimensionless units, -y = (1 + d- -j)1/2 = (1 + U.2 + U.) 1/2 gives the electron energy.

t From (42) it follows that the change in -y is

d =y _ U-9 (43)
dz U,

Regardless of the symmetry of the overall cavity fields, the guiding center coor-

dinates (see Figure 2) are the natural system to use when carrying our linear theory.

The guiding center variables may be expressed as (U±, U,, p, zgc, ygc, t) in Cartesian

coordinates or (U±, U,, v, rgc, Ot gc, t) in cylindrical coordinates. The guiding center

coordinates are related to cavity frame coordinates by the relations

Z = Xgc + r, COS(

= rgc cos(Ogc) + ,L cos(9P), (44)

I* Y = ygc + r, sin(p)

= rgc sin( Og9 ) + rL sin(p), (45)

* U = -Uj sin(v), (46)

11 u = UxcoB(). (47)
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The position yge) or (r 9 ., Ogc) corresponds to the electron guiding center position,

with rL = Uu/B. being the Larmor radius. The dynamical equations for the guiding

center variables follow from (42, 44-47),

dz1 U- [Ev + UxB,,/1, (48)

W -I B0d [Er - U.Bv/'y + U±B,/y] + :-, (49)dz U.UL
dU. U± 8,
-z = U. , (50)

dt _-y(

dZ (51)

and eitherS

dzc U [(E, + U.B, /.)cos(c)

+ (ErL - U.B,/'y + U B,/'y) sin(p)], (52)

dyzc = UB [(E, + U.B,/-) sin(p)

- (E,, - UBv/-I + U-B./-y) cos(p)], (53)

or

dr = B [(EV + UBL/Y) cos(kg - )
dz UB 0

- (Er, - UzBply + U±B./-y) sin(OC4 - o)], (54)

zUB [(Eq + U.B,_ /-y) sin(Pgc-

+ (E,. - U.Bp/y + U±B.lf) cos(ogc - )1. (55)

The RF fields terms, E,,, ErL, B,, and B,., correspond to the values of t and B along

the and T L directions.
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To solve for the perturbations induced by the RF field, we linearize the equations

of motion as follows

U± = U±- + 6U 1 , (56)

U. = U,. + 6u., (57)

+ B. + Z o Zo) + 6P, (58)
U..

Zgc = IgC. + 6x9g, (59)

z YgC = Yge. + 6 ygc, (60)

rgc -- rgc + brgc, (61)

Ogc ---- gco + 6ikgc, (62)

t =zto + -o(Z - Zo) + 6t, (63)U'o

where the constants U U,0 , Po, Zgc, ygco, roo, ?g.o and to represent the initial

variable values at the entrance position of the cavity z,. In the following we take zo = 0.

The equations of motion for the perturbed variables then follow as

d6U1 - o-O (64)

t d6 -o B ZU
= U -U- z- oB -0 ,(65)

dz - 0 U1 U 0  UL

d6U, = U10  (66)
dz .. r, ,

if d6_ _ 1 [ +uU
dz Uu -U±6U±j, (67)dz oU.° U..
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dz = o ; cos(0.) + sin( o)], (68)

dz U,. B,

dz Uo B. 0
dz U, B 0  cos(Ok . - o -io, sin(g,. - 0)] (70)

__~g -yo [Eko sin(O.9 , - Oo) +,to cos(tk,,. - 0o)] (71)
dz UgBorgco

where

i Ep = Evo + U,..B 0/ , (72)Io

rr, Of

Etro = ErL - Uo Bo//o + UL/B-, (73)

-o = po + Boz/U.o. (74)

Ep, E,, B p, B'L, and BO are the RF field terms in the , TL, and i directions

evaluated along the unperturbed orbits. to and E represent respectively the 0 and

;L components of vector E +1 U x B/-y from the equation of motion also evaluated along

the unperturbed orbits. The variable Oo gives the phase variation about the guiding

center for zero RF field.

To calculate the average change in energy for the beam we must also linearize the

energy equation (43), which becomes

d6  6 U± o U 6UZEo, U± [6 aEP* + E6r.

dz U0  U. at dCrgc

OE" OE" OE'O*+ bog 0¢-- + brL 'oP + bP-T ] (75)

or

d6q 6 U. EO. U±6UEO. Uor Eo

+i u, w + br 9U.O at + 6 g (76)

+6 S gc + 6 rL- 8 .(6
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For a constant background magnetic field B0 , brL -- 6Ul/B0 . The equations for

d6-y/dz have been expanded to second order in the RF field amplitude E,.

In order to solve these linearized equations we must express the RF fields in terms

of the guiding center coordinates. For the cylindrical geometry eigenfunction set (8-13)

Graf's theorem [221,

(0C,(kr) Cos ( 0) Cv+k(Kc)Jk(KL) k(ir - tkgc + V), (77)

sin sin
k=-oo

for rgc > rL, or

cos . oC(kLr) Cs( - 0) = J J+k(Kgc)Ck(KL) cs k(ir - ',g, + p), (78)

sin k=-0sink= -o

for rg, < rL, is used where Kg, = kr,. and KL = k±rL. For the rectangular geometry

eigenfunction set (26-31), the expansions

00

cos[KLsin(p-± A)] = E Jk(KL)COS[k(o± A)], (79)
k=-00

sin [KL sin(, ± A)] = E Jk(KL) sin [k(p + A)], (80)
k=-oo

cos [KL cos(P ± A)] = 1 Jk(KL) cos [k(p ± A + 7r/2)], (81)
k=-oo

00

sin [KL cos(P ± A)] = Z Jk(KL) sin [k(± ± A + 7r/2)], (82)

are similarly used. In (79-82), cos A = k2 /k±_.

Using the above expansions, the guiding center RF fields in Region I which contains
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the beam can be expressed as

E i= Eo A' E Dr, ( L) sin(k.z)ei€-. (83)
- r L-(8

Es, = -i"! Eo, r E Dr. J.(KL) sin(k.z)ec( ' P-Wt), (84)

r *=-0(

00

B". = LEoZA' r Dr rJ(KL)COs(kaz)etCPw-), (85)
r

Bf = ian Eo E A' E Dr- (yl ) cos(kz)es, it), (86)

r nd msDr. J.(KL) sin(kz).e(forWt) o (87)

where the function Dr, is

Dr'. = Cr". (Kgc) t(.1 Pg (88)

for the cylindrical coordinates eigenfunction expansion, and

Dr. = I [eikcr "go Cos (ky, Ygc - 8EXr) + ( s)etkrbsc Cos (kyi~lgc + 8skr)] eisw2 (89)

for the Cartesian coordinates expansion. For cylindrical coordinates, if rtL > t gc, the

replacement C' -+ J and J -+ C' must be made in (83-88). The form of the guiding

center RF fields is clearly independent of the choice of the coordinate eigenfunction

basis set one wishes to use to describe the cavity fields and follows from the Fourier

transformation for our separable eigenfunction expansion. To determine the contribu-

tion of the cavity field at the ith harmonic, one merely sums the contribution from

each r eigenfunction A' Dr..

When evaluated along the unperturbed particle orbits the only variation in the

guiding center RF fields (83-87) comes from sin(kaz)ei(*f~jP-t), which takes the sim-

ple form (ei k'k - ei k ' Z) •i(B °/1 ° W)7° / U o ei(8'°--wt°)/2i, making the linearized equa-

tions of motion simple to evaluate. These equations are solved in the following order:

64
t



, F= m

We first integrate (64, 66, 68-69) or (64, 66, 70-71) to determine 6U., 6U., and either

6z., and 6ygc or 6rgc and 6,,. The expressions for 6U.. and 6U, are then substituted

into (65, 67) to determine 69o and 6t. Using these perturbed orbital variables, (75) or

(76) is finally integrated from z = 0 to z = L in order to calculate 61. The perturbed

energy change is then averaged over t. and the phase angle v.. We will not average

over guiding center position at this point. The averaged form for (&y~,o P,',which comes

from a straight forward integration of (75) or (76) is given by

EP ° 2 E r A E (a 1 +a 2 + +a)+-, (90)

( 6 ~y~r o Uk± A *=00

where

U±L (w2 - k2 2) [4z_ (ei  + 1) - 2 (e* - -1 HrA.

U.[L k__ + I HrA.

y0 ~u..W 2 ~1

L2 (&_ - e'" + )(w -kU/y.) TrA - k±U±oUrA,/fYoI, (91)

C4 (w S 2 (W 2 k_2 + 1) + 1] HrA.

L.ULk, +1 F

L]x ( i)A - [(w + kU,o/) TrAl- k.LU±oUrA/'Yoj, (92)

I,± (w - ,Bolyo ± kU,./oly) Ly/U.., (93)
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and

HrA, = D&DA. [J (KL.) 12 , (94)

TrA. = HrA. + KLoJ: (KL.) {J, (4.) D; DA

JaK % [DiA+ + Dr-i-il 2* (KL.) Pr.DAi (5

J. (KL) 2+2(95)

UrA. - .2 ( .)I . I (,L.) [+ D -. DA. - D.A..

+ J.+, (K,.) [Dr.+,DA.+, - Dr.DA.] (96

The functions a2 and a3 are related to a, and N* by

12 (k.) = , (-k.), (97)

a3 (k.) = (4 (-k). (98)

Equation (90) for (6-y)to ,o contains a double sum over the cavity moae harmonics r

and A. For the cylindrical coordinates expansion, r and A are restricted to: r = Nj+m

for j = 0, ±1, ±2, ... and A = Nk + m for k = 0, ±1, ±2, .... For the Cartesian

coordinates expansion, the non-negative harmonics which satisfy r = 2Nj ± m, where

j = 0,1, 2,..., and A = 2Nk ± m, where k = 0, 1, 2,..., are allowed. When m = 0, the
two Cartesian r cavity mode harmonics r = 2Nj + m and r = 2Nj - m, and the two A

cavity mode harmonics A = 2Nk + m and A = 2Nk - m are identical. In this case, the

sums over r or A can be written as twice the sum for all r = 2Nj or A = 2Nk. Note

again that for the cylindrical expansion, if r.o > rgc° one must make the replacement

C' -- J and J -+ C' in the above relations.

In (90), the variation of (6 y)to o with guiding center position only enters through

the factors Dr 0DA,,, Po+,DA.+, and P.P-,A.-1 . Averaging over the guiding cen-

ter position Og.. from 0 to r for the cylindrical case or zg,, from 0 to L. for the
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Cartesian coordinate case collapses the double sum over r and A to a single sum

with r = A and DrkDrt replaced by either rCtrk1 2 or [cos(kJ.y~o) 2 Cos(sAr) 2 +

sin(kyr Zgc.)2 sin(sAr) 21/2. For the cylindrical slotted gyrotron oscillator, the resulting

expression for (S-y)to ,o . agrees with the results of Chu and Dialetis [11-12]. While

this guiding center averaging is reasonable for modeling an axis-symmetric beam in a

cylindrical cavity, it is not reasonable in a rectangular cavity, where zgc. cannot re-

alistically be taken within rL. of the cavity walls. If m = 2Ni where i = 0,1,2,...,

P then the RF field shows a N-fold periodicity in the z direction and the simplifying

Zg. averaging can be done from Lz(j/N) to L.(k/N), where 0 < j < N - 1, and

j<k<N.

The form of (6-y)to ,o given in (90) is a very complicated function of the beam and

cavity parameters. It is far from the most compact form for the net energy change, and

it does not clearly show the separate contributions from the electron cyclotron maser

interaction, the peniotron interaction, and other interactions. A more compact form

can be obtained by combining and re-arranging the terms in al + a 2 + a3 + a 4. To

start off with, we will re-write (6-y) to 0 in the form

E 0 w 2 'YO 2A 00 I all kLU' .
k,2= U4 k2 ,r "A -f -

-L r A *= [,,' II
2AkU2 k-- 2,x2 HrA.9'

-Y.U P.. 9 'Y0U, 0k~w 1W -

+ -Iou,0 o
+kL-. UICHrA. + ICZUZOTr1> (99)

4w I[-l.Uz '1o

where

(A fl\ 'YO (100)

I =e - i(LwA+( -l) 'rl + 1 .li')A

9 + 7, (101)2 ()2 1)2 '4 (\2 - 1)
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While (99) shows explicitly the rapid variations in the magnetic mistuning variable

A about the harmonic resonances, one can still obtain a simpler form for (6y) t. o

Upon expanding and re-writing the HrA., TrA., and UrA. terms, the following final

expression can be obtained

P6),,. = 2 .2 r A A
k s-=-oo r A

{ UI2J2 2 (KL.) (w dg(A) _ k, dA2g(A)\

-y.U,. \k. dA w dA

-2aJ,(K.) (J KLo) sn k-LU±.J(KLo) g( )

k2 U
2

1-1" [J12 (KL.) g(A + ) - J,! ((4) g(\)]

.kL. L Uj 2 (KL.) (w df (A) kd~() k 12
- +,_ (102)g )

4 [.° dA w dA w)

2-2 l --KL.) (J+1 (KL.) f(A+) -- 1) (KL°) f (-))

+kUo(J.+,(KLo) J'+jI(KLo)+ J.-(KL)J '  (KL.) + 2J. (KL.) J(KL))]]}

where

g \(2 -1)) 
(103)

f- A 4sin(s) cos(t&)

(A2 - 1) k.L,(A2 - 1)2'

J\ a± ) 'to. (105)

I& = 17rA/2 + (I - 1)7r/2. (106)

As the product Er A-f1D* EA A41 DA, is real, -.d since all of the variables and functions

within the brackets ... } are real, the first set of terms in (102) give the real part
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of (6"y)t.., and the second set of terms multiplied by i give the imaginary part of

(C" ,*.. As is shown below, Re((6-y)t.,,.) and Im((6-y)t. ,.) respectively determine

the gyrotron start oscillation beam power and resonant frequency detuning. Averaging

over the guiding center angle 0... for a cylindrical cavity or over z... for a rectangular

cavity again leads to a reduction of the double sum over cavity eigenfunctions to a single

sum. After averaging the product Er A' 'Dro EA AIDA. is replaced by Er IA' 121.r.12

where ler°2 is either C ,] 2 (or 1Jk 12 if rL. > rg,.) or [cos(kv '.) 2 cos(s\r)2 +

sin(kVr y/gc) 2 sin(aAr) 2]/2 respectively for cylindrical and Cartesian geometries. The

smooth walled limit of equation (102) is obtained by taking the limit w -' 0 or 0. --+ 0

in the dispersion relation, and by using r = m, AI6Ar = 1, A"' = 0.

The full behavior of (6"y)t. 0. is clearly given by equation (102). The guiding center

dependence is given by the factor Z- r A*Dr° Z-EA A'DA.; the resonance behavior as a

function of magnetic field about the cyclotron harmonics is given by the functions g

and f; and the several interactions which simultaneously take place in a gyrotron are

explicitly separated. Cyclotron maser and Weibel emission resonances are given by

the terms in ULJ, 2 /y0 U.,(...). The terms in 2sJI(...) are due to cyclotron maser

absorption. Peniotron emission and absorption resonances are represented respectively

by the terms with the factors g(-), (.-), g(+), and f(\+). We note that equation

(102) for a smooth walled cylindrical cavity is equivalent to the relation derived by

Brand [231, and that the real portion of (6 -y)t.,. averaged over t€o is in the same

form given previously by Vitello [24]. For slotted cylindrical oscillators, the real part of

equation (102) can also be shown to equal the more complicated relation by Chu and

Dialetis [11-121.

The start oscillation beam power and the frequency detuning equation for steady

state operation for any TE,,,ii mode can be found directly from (6-y)to .0. Taking the

unperturbed beam energy to be F6 , the total net energy transferred from the beam
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to the cavity fields is given by P(6y),o o( - 1). Quite generally [251, the starting

power can be given by

QPb = -8.6 x 1061W(W - 1)/Re((by)t. v.) kW, (107)

S and the frequency detuning due to the presence of the beam is

oWo _ W,(/i/, o (108)w -w 2Q Re((b"y)t. .)'

where w. = (k.2 + k2) 112 is the cold cavity frequency. For gyrotron tubes, the quality

factor Q is due mainly to diffractive losses, and with a good estimate of its value

obtained from cold cavity tests (107) provides an good estimate of the actual start

oscillation power required. By contrast, the linear theory values for the frequency

detuning often differ significantly from the detuning under normal high field operating

conditions [23] and should used with caution. Again we stress that for rLr > rgc. there

must be a replacement in the above relations of C" - J and J -, C'.

7
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IV. Discussion

We have extended the modeling of the linear kinetic theory for gyrotron oscillators

to cavities with slotted rectangular and cylindrical co-axial cross sections. The averaged

beam perturbed energy change is shown in a form (102) which is the same in rectangular

and cylindrical cavities. The cavity geometry determines only k± and the magnitude

of each harmonic contribution to the overall RF cavity field of a particular mode. For

each harmonic, the functional form of the differing interactions, such as the electron

cyclotron maser and the peniotron interactions, do not vary with the cavity geometry

and are the same for smooth walled and slotted tubes. Studies of the relative strengths

of the interactions for smooth walled gyrotrons [251 can therefore be applied directly

to slotted cavity devices.

We apply here our results to the slotted rectangular and cylindrical cavities dis-

cussed earlier. In the case of a cylindrical cavity we set R, = 0, average (6-1)t. . over

... , and use an axis encircling electron beam to allow for comparison with the results

of Chu and Dialetis [11-12]. In Figure 3 we show the E9 RF field profile for the TE 311

mode for a cavity with N = 6 and R, = 1.4. As one of the major advantages of the slot-

ted cylindrical cavity is the reduction of the start oscillation condition with increasing

R., we plot QPb in Figure 4 for both the electron cyclotron maser interaction and the

peniotron interaction as a function of R.. In the figure, L, is increased with increasing

14 to hold k±/kl fixed at 10.7. The decrease in QPb with R. is partially due to the

effects of a longer cavity, but is primarily caused by the increasing slot depth. The

electron cyclotron maser emission curve for 49.9 KeV is terminated at the R value

where the Larmor radius strikes the cavity wall. Our results for the electron cyclotron

maser QPb are in agreement with Chu and Dialetis. However, we find that at low beam

energy the start oscillation condition is actually amaller for the peniotron interaction.

Chu and Dialetis give results only for the electron cyclotron maser resonances and do

not consider the peniotron resonances.
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As an example of the effect of slots in a rectangular cavity gyrotron oscillator we

will consider the start oscillation condition QPb for the cavity and beam parameters

investigated by Han and Ferendeci [17] for a slotted rectangular cavity gyro-TWT. For

the TE021 mode, which Han and Ferendeci found to give strong sixth harmonic emis-

sion, we place the electron beam in Region I at z... = L./2, ygo = R/2. Figure 5

shows the E. component of the RF field. The strong fringe field observed in this figure

couples very strongly with high harmonic emission. This coupling will be significant

at high harmonics since with rising harmonic number a the growth of the the Larmor

radius, rL. = so6./w, allows the beam to increasingly penetrate the fringe fields. In

Figure 6 we show QPb for the slotted rectangular cavity as a function of magnetic field

for multiple harmonic emission. Harmonics greater than the sixth are not shown as the

beam Larmor radius would be greater that one-half the cavity width R. For comparison

QJ'b for a smooth walled rectangular cavity is shown also. For our beam position, the

smooth walled cavity only shows emission at the even harmonics. For the slotted cavity,

harmonics for a =1-3 are dominated by the electron cyclotron maser instability. The

fourth harmonic is due primarily to the peniotron instability. For harmonics greater

than fourth, both the electron cyclotron maser and peniotron instabilities strongly con-

tribute. It is evident that the addition of slotted not only enormously enhances the

very high harmonic (a > 4) interaction and hence greatly lower QPb, but this enhance-

ment increases with increasing harmonic number. This decrease in QP 6 with harmonic

number is implicit also in the ridged gyro-TWT modeling of Han and Ferendeci. For

the smooth walled rectangular, smooth walled cylindrical, or even ridged cylindrical

cavities with axis encircling beam previously studied in the literature, the standard

behavior with increasing harmonic number is a growth in the start oscillation beam

power. The high harmonic interaction observed here for the ridged rectangular cavity

shows a great potential for the practical development of a high frequency, low magnetic

field gyrotron oscillator.
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In conclusion we find that for complex cross gyrotron cavities the start oscillation

condition can be written in a form which separates the geometric factors from the phys-

ical interaction terms. An analysis of slotted cavities using this formalism shows that

slots can be used to enormously enhance the high harmonic RF field, beam interaction

for both rectangular and cylindrical cavities, and for both the fundamental electron

cyclotron maser and the peniotron interactions.
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Figure Captions

Figure la. Cross-section of the slotted cylindrical gyrotron.

Figure lb. Cross-section of the slotted rectangular gyrotron.

Figure 2. Guiding center coordinate system.

Figure 3. ES RF field for a ridged cylindrical cavity with R, = 1.4, G= -r/2N, N = 6.

Figure 4. Variation of the start oscillation condition for the third harmonic electron cy-

clotron maser interaction (dashed curves) and second harmonic peniotron inter-

action (solid curves) as a function of R, for the TE 311 mode. The beam axial

velocity is fo = 0.1.

Figure 5. E. RF field for a ridged rectangular cavity with L, = 2.186, Ro = 1.198, w

0.05466, and N = 3.

Figure 6. TE021 mode start oscillation condition for the rectangular cavity for the electron

beam with 72 keV, and #,. = 0.28. The solid curve gives QPb for the ridged cavity,

while the dashed curve gives QPb for the smooth walled cavity.
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